Combining Rule Learning and Nonmonotonic Reasoning for Link Prediction in Knowledge Graph

Francesca A. Lisi1, Daria Stepanova2
francesca.lisi@uniba.it, dstepano@mpi-inf.mpg.de,
1Università degli Studi di Bari “Aldo Moro”, Bari, Italy
2Max Planck Institute for Informatics, Saarbrücken, Germany

1. Motivation

- Knowledge Graphs: huge collections of positive unary and binary facts treated under Open World Assumption

- Automatically constructed, thus incomplete/inaccurate

- Horn rule mining to clean KGs e.g., [Galárraga et al., 2015]

- But: exceptions are not captured by Horn rules, thus erroneous predictions

2. Quality-based Horn Theory Revision

Given:
- Knowledge Graph
- Set of Horn rules

Find:
- Nonmonotonic rules revision, s.t.
 - average conviction is maximized
 \[\text{conv}(r, KG) = \frac{1}{1 - \text{supp}(r, KG)} \]
 - number of conflicting predictions is minimized

3. Approach Overview

4. (Ab)normal Substitutions and Exception Candidates

5. Exception Ranking

6. Experiments

7. Further Work

References

